Refine Your Search

Topic

Search Results

Technical Paper

Mechanism of NOx Reduction by Ethanol on a Silver-Base Catalyst

2001-05-07
2001-01-1935
Since there is a trade-off relationship between NOx and particulates in exhaust gas emitted from a diesel engine, simultaneous reduction of the amounts of NOx and particulates in a combustion chamber is difficult. However, the amount of particulates produced in the combustion process could be reduced in a state of almost complete combustion, and the amount of NOx produced during the combustion process could be reduced by the use of a catalyst and reducing agent in the exhaust process. It has been demonstrated that the use of ethanol as a reducing agent on a silver-base catalyst in the presence of oxygen is an effective means for reducing NOx, although the mechanism of the reduction has not been elucidated. Therefore, in the present study, an NOx-reduction apparatus was conducted, and model experiments on NOx reduction were carried out in an atmosphere simulating exhaust gas emitted from a diesel engine and at the same catalyst temperature as that in a combustion chamber.
Technical Paper

Nature and Reduction of Cycle-to-Cycle Combustion Engine with Ethanol-Diesel Fuel Blends

1983-09-12
831352
Many of the promissing alternative fuels have relatively low cetane numbers, and may-result in combustion variation problems. This paper presents the chracteristics of the cycle-to-cycle combustion variations in diesel engines, and analyzes and evaluates the mechanism. Combustion variations appear in various forms, such as variations in ignition lag, indicated mean effective pressure, maximum combustion pressure, or rate of heat release. These variations are clearly correlated, and it is possible to represent the combustion variations by the standard deviation in the combustion peak pressure. The combustion variations are random (non-periodic), and are affected by ethanol amount, intake air temperature, engine speed and other various operating conditions.
Technical Paper

Nature of Fundamental Parameters Related to Engine Combustion for a Wide Range of Oxygenated Fuels

2002-10-21
2002-01-2853
The fundamental parameters related to engine combustion and performances, such as, heating value, theoretical air-fuel ratio, adiabatic flame temperature, carbon dioxide (CO2), and nitric oxide (NO) emissions, specific heat and engine thermal efficiency were investigated with computations for a wide range of oxygenated fuels. The computed results showed that almost all of the above combustion-related parameters are closely related to oxygen content in the fuels regardless of the kinds or chemical structures of oxygenated fuels. An interesting finding was that with the increase in oxygen content in the fuels NO emission decreased linearly, and the engine thermal efficiency was almost unchanged below oxygen content of 30 wt-% but gradually decreased above 30 wt-%.
Technical Paper

Reduction of Smoke and NOx by Strong Turbulence Generated During the Combustion Process in D.I. Diesel Engines

1992-02-01
920467
This paper presents results of experiments to reduce smoke emitted from direct Injection diesel engines by strong turbulence generated during the combustion process. The turbulence was created by jets of burned gas from an auxiliary chamber installed in the cylinder head. Strong turbulence, which was induced late in the combustion period, enhanced the mixing of air with unburned fuel and soot, resulting in a remarkable reduction of smoke and particulate; NOx did not show any increase with this system, and thermal efficiency was improved at high loads. The paper also shows that the combination of EGR and water injection with this system effectively reduces the both smoke and NOx.
Technical Paper

Significant NOx Reductions with Direct Water Injection into the Sub-Chamber of an IDI Diesel Engine

1995-02-01
950609
The effect of direct water injection into the combustion chamber on NOx reduction in an IDI diesel engine was investigated. The temperature distribution in the swirl chamber was analyzed quantitatively with high speed photography and the two color method. Direct water injection into a swirl chamber prior to fuel injection reduced NOx emission significantly over a wide output range without sacrifice of BSFC. Other emissions were almost unchanged or slightly decreased with water injection. Water injection reduced the flame temperature at the center of the swirl chamber, while the mean gas temperature in the cylinder and the rate of heat release changed little.
Technical Paper

Simultaneous Reductions in Diesel NOx and Smoke Emissions with Aqueous Metal-Salt Solutions Directly Injected into the Combustion Chamber

1996-05-01
961164
The effect of several aqueous metal-salt solutions on NOx and smoke lowering in an IDI diesel engine were examined. The solutions were directly injected into a divided chamber independent of the fuel injection. The results showed that significant lowering in NOx and smoke over a wide operation range could be achieved simultaneously with alkali metal solutions which were injected just prior to the fuel injection. With sodium-salt solutions, for instance, NOx decreased by more than 60 % and smoke decreased 50 % below conventional operation. The sodium-salt solution reduced dry soot significantly, while total particulate matter increased with increases in the water soluble fractions.
Technical Paper

Simultaneous Reductions of Smoke and NOx from a DI Diesel Engine with EGR and Dimethyl Carbonate

1995-10-01
952518
Extensive experiments were conducted on a low emission DI diesel engine by using Dimethyl Carbonate (DMC) as an oxygenate fuel additive. The results indicated that smoke reduced almost linearly with fuel oxygen content. Accompanying noticeable reductions of HC and CO were attained, while a small increase in NOx was encountered. The effective reduction in smoke with DMC was maintained with intake charge CO2, which led to low NOx and smoke emissions by the combined use of oxygenated fuel and exhaust gas recirculation (EGR). Further experiments were conducted on an optically accessible combustion bomb and a thermal cracking set-up to study the mechanisms of DMC addition on smoke reduction.
Technical Paper

Smokeless, Low NOx, High Thermal Efficiency, and Low Noise Diesel Combustion with Oxygenated Agents as Main Fuel

1998-02-23
980506
Diesel combustion and emissions with four kinds of oxygenated agents as main fuels were investigated. Significant improvements in smoke, particulate matter, NOx, THC, and thermal efficiency were simultaneously realized with the oxygenates, and engine noise was also remarkably reduced for the oxygenates with higher ignitability. The improvements in the exhaust emissions and the thermal efficiency depended almost entirely on the oxygen content in the fuels regardless of the oxygenate to diesel fuel blend ratios and type of oxygenate. The unburned THC emission and odor intensity under starting condition with an oxygenate were also much lower than with conventional diesel fuel.
Technical Paper

Smokeless, Low NOx, and Low Noise Diesel Combustion with Methanol as a Main Fuel

1981-11-01
811375
In order to obtain improved combustion of methanol in a dual fuel diesel engine, both methanol and gas oil as an auxiliary fuel were injected into a pre-combustion chamber. The effects of proportion and timing of the auxiliary fuel injection, and the main injection timing on the engine performance and on emissions were investigated. As a result, with methanol 95% of total energy input, combustion took place without misfiring or knocking. The combustion was smokeless, smoother, with lower NOx, and lower noise than for usual combustion with gas oil. The thermal efficiency was maintained at the same level as in conventional diesel operation.
Technical Paper

Study on Exhaust Control Valves and Direct Air-Fuel Injection for Improving Scavenging Process in Two-Stroke Gasoline Engines

1996-02-01
960367
A critical factor in improving performance of crankcase-scavenged two-stroke gasoline engines is to reduce the short-circuiting of the fresh charge to the exhaust in the scavenging process. To achieve this, the authors developed a reciprocating exhaust control valve mechanism and direct air-fuel injection system. This paper investigates the effects of exhaust control valve and direct air-fuel injection in the all aspect of engine performance and exhaust emissions over a wide range of loads and engine speeds. The experimental results indicate that the exhaust control valve and direct air-fuel injection system can improve specific fuel consumption, and that HC emissions can be significantly reduced by the reduction in fresh charge losses. The pressure variation also decreased by the improved combustion process. CRANKCASE SCAVENGED two-stroke gasoline engines suffer from fresh charge losses leading to poor fuel economy and it is a reason for large increases of HC in the exhaust.
Technical Paper

The Effect of Fuel Properties on Diesel Engine Exhaust Particulate Formation

1989-02-01
890421
Exhaust particulate in diesel engines are affected by fuel properties, especially the aromatic hydrocarbon content and distillation properties, but the reasons for this are not clear. The process of particulate formation has been reported to start with a thermal cracking of the fuel to lower boiling point hydrocarbons followed by condensation polymerization and production of benzene ring compounds; the formation of particulate takes place via polycyclic aromatic hydrocarbons. The fuel properties affect diesel engine particulate because the thermal cracking and condensation polymerization of various fuels are different.
Technical Paper

The Effect of Fuel Properties on Particulate Formation (The Effect of Molecular Structure and Carbon Number)

1989-09-01
891881
Exhaust particulate in diesel engines is affected by fuel properties, but the reason for this is not clear. Interest in using low-grade fuels in diesel engines has made it necessary to understand the particulate formation mechanism and factors to decrease it. Particulate formation has been reported to start with thermal cracking of the fuel to lower boiling point hydrocarbons followed by condensation polymerization and production of benzene ring compounds; the formation of particulate takes place via polycyclic aromatic hydrocarbons. This report investigates the amount and configuration of particulate with a fluid reaction tube and in a nitrogen atmosphere, and analyzes polycyclic aromatic hydrocarbons (PAH) of fuels with different molecular structure and carbon number.
Technical Paper

The Effects of Flash Boiling Fuel Injection on Spray Characteristics” Combustion, and Engine Performance in DI and IDI Diesel Engines

1985-02-01
850071
This paper deals with the effects of flash-boiling injection of various kinds of fuels on spray characteristics, combustion, and engine performance in DI and IDI diesel engines. It is known that spray characteristics change dramatically at the boiling point of fuel. When the fuel temperature increases above the boiling point, the droplet size decreases apparently and the spray spreads much wider. At higher fuel temperatures, above the boiling point, the apparent effects are a lower smoke density and improved thermal efficiency at higher loads, resulting from the shorter combustion duration; it is thus possible to obtain a markedly improved engine performance in engines with a low air-utilization chamber. Remarkable changes in heat release with the increase in fuel temperature are; an increase in premised combustion quantity and shortening of the combustion duration. The changes in smoke emission and thermal efficiency for different engine types are also considered in this paper.
Technical Paper

The Influence of Fuel Properties on Diesel-Soot Suppression with Soluble Fuel Additives

1991-02-01
910737
Diesel soot suppression effects of catalytic fuel additives for a range of fuels with different properties were investigated with calcium naphthenate. A single cylinder DI diesel engine and a thermobalance were used to determine the soot reduction and its mechanism for seven kinds of fuels. Experimental results showed that the catalytic effect of the fuel additive was different for the different fuels, and could be described by a parameter considering cetane number and kinematic viscosity. The fuel additives reduced soot more effectively for fuels with higher cetane number and lower kinematic viscosity. This result was explained by soot oxidation characteristics for the different fuels. Oxidation of soot with the metallic additive proceeds in two stages: stage I, a very rapid oxidation stage; and stage II, a following slow or ordinary oxidation stage.
Technical Paper

The Microcrystal Structure of Soot Particulates in the Combustion Chamber of Prechamber Type Diesel Engines

1990-09-01
901579
To clarify the microcrystal structure of soot particulate in the combustion chamber, we examined sampling methods which freeze the reaction of sample specimens from the combustion chamber and collected the soot particulates on microgrids. We investigated the microcrystal structure with a high resolution transmission electron microscope. The results were: the particle size distribution and the microcrystal structure of the soot particulates is little different for the cooled freezing method and room temperature sampling. The typical layer plane structure which characterizes graphite carbon is not observed in the exhaust of diesel engines, but some particulates display a somewhat similar layer plane structure. The structure of soot particulate is a turbostratic structure as the electron diffraction patterns show polycrystals. The soot particulates in the combustion chamber is similar to exhaust soot particulates.
Technical Paper

Theory and Experiments on Air-Entrainment in Fuel Sprays and Their Application to Interpret Diesel Combustion Processes

1995-02-01
950447
This paper presents a theory and its experimental validation for air entrainment changes into fuel sprays in DI diesel engines. The theory predicts air entrainment changes for a variety of swirl speeds, number of nozzle holes, nozzle diameters, engine speeds, injection speeds and fuel densities. The formulae of the theory are simple non-dimensional equations, which apply for different sized engines. Experiments were performed to compare theoretical predictions and experimental results in six different engines varying from 85 to 800mm bore. All results showed good agreement with the theoretical predictions for shallow-dish piston engines. However the agreement became poor in the case of deep cavity piston engines. With the theory, it is possible to interpret a variety of combustion phenomena in diesel engines, providing additional understanding of diesel combustion processes.
Technical Paper

Time Series Analysis of Diesel Exhaust Gas Emissions Under Transient Operation

1993-03-01
930976
Time series analysis of diesel exhaust gas emissions under transient operation was carried out using a uniquely developed gas sampling system to efficiently collect all exhaust gas throughout transient cycles. The effects of fuel properties and other engine operation parameters on the exhaust emissions under transient runs when fuel amounts abruptly increase were analyzed. The results showed that THC increased abruptly to 2 or 6 times the final steady-state concentration immediately after the start of acceleration and then decreased to the steady-state values after 70∼200 cycles. At acceleration, NOx increased abruptly to about 80 % of the final NOx concentration, and then increased gradually to reach the final values after 60∼500 cycles. The behaviors of THC and NOx during transient operation can be described by exponential functions of the elapsed cycle numbers and the final emission concentrations.
Technical Paper

Time-Resolved Behavior of Unburned Hydrocarbon Components in Diesel Exhaust Under Transient Operations

2001-03-05
2001-01-1259
Time resolved changes in unburned hydrocarbon emissions and their components were investigated in a DI diesel engine with a specially developed gas sampling system and gas chromatography. The tested transient operations include starting and increasing loads. At start-up with high equivalence ratios the total hydrocarbon (THC) at first increased, and after a maximum gradually decreased to reach a steady state value. Reducing the equivalence ratio of the high fueling at start-up and shortening the high fueling duration are effective to reduce THC emissions as long as sufficient startability is maintained. Lower hydrocarbons, mainly C1-C8, were the dominant components of the THC and mainly determined the THC behavior in the transient operations while the proportion of hydrocarbon (HC) components did not significantly change. The unregulated toxic substances, 1,3 butadiene and benzene were detected in small quantities.
Technical Paper

Time-Resolved Nature of Exhaust Gas Emissions and Piston Wall Temperature Under Transient Operation in a Small Diesel Engine

1996-02-01
960031
Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.
Technical Paper

Ultra Low Emission and High Performance Diesel Combustion with Highly Oxygenated Fuel

2000-03-06
2000-01-0231
Significant improvements in exhaust emissions and engine performance in an ordinary DI diesel engine were realized with highly oxygenated fuels. The smoke emissions decreased sharply and linearly with increases in oxygen content and entirely disappeared at an oxygen content of 38 wt-% even at stoichiometric conditions. The NOx, THC, and CO were almost all removed with a three-way catalyst under stoichiometric diesel combustion at both the higher and lower BMEP with the combination of EGR and a three-way catalyst. The engine output for the highly oxygenated fuels was significantly higher than that with the conventional diesel fuel due to the higher air utilization.
X